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Abstract

Popular deep models for action recognition in videos
generate independent predictions for short clips, which are
then pooled heuristically to assign an action label to the full
video segment. As not all frames may characterize the un-
derlying action—indeed, many are common across multiple
actions—pooling schemes that impose equal importance on
all frames might be unfavorable. In an attempt to tackle this
problem, we propose discriminative pooling, based on the
notion that among the deep features generated on all short
clips, there is at least one that characterizes the action. To
this end, we learn a (nonlinear) hyperplane that separates
this unknown, yet discriminative, feature from the rest. Ap-
plying multiple instance learning in a large-margin setup,
we use the parameters of this separating hyperplane as a
descriptor for the full video segment. Since these param-
eters are directly related to the support vectors in a max-
margin framework, they serve as robust representations for
pooling of the features. We formulate a joint objective and
an efficient solver that learns these hyperplanes per video
and the corresponding action classifiers over the hyper-
planes. Our pooling scheme is end-to-end trainable within
a deep framework. We report results from experiments on
three benchmark datasets spanning a variety of challenges
and demonstrate state-of-the-art performance across these
tasks.

1. Introduction
We are witnessing an astronomical increase of video data

on the web. This data deluge has brought out the problem of
effective video representation – specifically, their semantic
content – to the forefront of computer vision research. The
resurgence of convolutional neural networks (CNN) has en-
abled significant progress to be made on several problems in
computer vision (most notably on object detection and im-
age tagging) and is now pushing forward the state-of-the-
art in action recognition and video understanding. How-
ever, current solutions are still far from being practically

Figure 1. A visualization of discriminative pooling applied to RGB
frames in a sequence. (i) a sample frame, (ii) average pooling all
frames, (iii) dynamic image by rank pooling [2], and (iv) our SVM
pooling. Our representation captures more details of the actions as
it learns to discriminate parts of the foreground against a back-
ground set. In this case, we used the average-pooled frames as the
background.

useful, arguably due to the volumetric nature of this data
modality and the complex nature of real-world human ac-
tions [10, 11, 12, 13, 18, 41, 42, 54].

Using effective architectures, CNNs are often found to
extract features from images that perform well on recogni-
tion tasks. Leveraging this know-how, deep learning solu-
tions for video action recognition have so far been straight-
forward extensions of image-based models. However, video
data can be of arbitrary length and scaling up image-based
CNN architectures to yet another dimension of complex-
ity is not an easy task as the number of parameters in such
models will be significantly higher. This demands more ad-
vanced computational infrastructures and greater quantities
of clean training data [5]. Instead, the trend has been on
converting the video data to short temporal segments con-
sisting of one to a few frames, on which the existing image-
based CNN models are trained. For example, in the pop-
ular two-stream model [13, 41, 42, 53, 55], the CNNs are

1



trained to independently predict actions from short video
clips (consisting of single frames or stacks of about ten op-
tical flow frames); these predictions are then pooled to gen-
erate a prediction for the full sequence – typically using av-
erage/max pooling or classifying using a linear SVM. While
average pooling gives equal weights to all the predictions,
max pooling is sensitive to outliers, and a classifier may be
confused by predictions from background actions. Several
works try to tackle this problem by using different pooling
strategies [2, 14, 53, 54, 60], which achieve some improve-
ment compared with the baseline algorithm.

To this end, we observe that not all predictions on the
short video snippets are equally informative, yet some of
them must be [36]. This allows us to cast the problem in
a multiple instance learning (MIL) framework, where we
assume that some of the features in one sequence are in-
deed useful, while the rest are not. We assume all the CNN
features from a sequence (containing both the good and bad
features) to represent a positive bag, while features from the
known background or noisy frames as a negative bag. We
then formulate a binary classification problem of separat-
ing as many good features as possible in the positive bag
using a discriminative classifier. The decision boundary of
the classifier thus learned is then used as a descriptor for
the entire video sequence, which we call the SVM Pooled
(SVMP) descriptor. Subsequently, the SVMP descriptor is
used in an action classification setup. We also provide a
joint objective that learns both the SVMP descriptors and
the action classifiers, which generalizes the applicability of
our method to both CNN features and hand-crafted ones. In
a pure CNN setup, our pooling method can be implemented
alongside the rest of the CNN layers and trained in an end-
to-end manner.

Compared to other popular pooling schemes, our pro-
posed method offers several benefits: First, it produces a
compact representation of a video sequence of arbitrary
length by characterizing the classifiability of its features
against a background set. Second, it is robust to classifier
outliers thanks to the SVM formulation. Last, it is compu-
tationally efficient. To provide intuitions, in Figure 1, we
provide a visualization of our descriptor applied directly on
video frames. As is clear, SVMP captures the essence of ac-
tion dynamics in more detail in comparison to prior works.

We provide extensive experimental evidence on vari-
ous datasets for different tasks, such as action recogni-
tion/anticipation/detection on the HMDB-51 and Charades
datasets and skeleton-based action recognition on NTU-
RGBD. We outperform baseline results on these datasets
by a significant margin (between 3–11%) and beat all the
previously reported results as well (between 1–4%).

To set the stage for introducing our method, we briefly
review relevant literature on prior works in the next section.

2. Related Work
Traditional methods for video action recognition typi-

cally use hand-crafted local features, such as dense tra-
jectories, HOG, HOF, etc. [51], or mid-level representa-
tions on them, such as Fisher Vectors [34]. With the resur-
gence of deep learning methods for object recognition [21],
there have been several attempts to adapt these models to
action recognition. Recent practice is to feed the video
data, including RGB frames, optical flow subsequences, and
3D skeleton data into a deep (recurrent) network to train
it in a supervised manner. Successful methods following
this approach are the two-stream models and their exten-
sions [11, 12, 18, 20, 41]. Although the architecture of
these networks are different, the core idea is to embed the
video data into a semantic feature space, and then recog-
nize the actions either by aggregating the individual features
per frame using some statistic (such as max or average) or
directly training a CNN based end-to-end classifier [11].
While the latter schemes are appealing, they usually need to
store the feature maps from all the frames in memory which
may be prohibitive for longer sequences. This problem may
be tackled using recurrent models [1, 8, 9, 25, 45, 60], how-
ever such models are usually harder to train [32]. Another
promising direction is to use 3D convolutional filters [5, 47],
but would need more parameters and large amounts of clean
data for pretraining. In contrast to all these approaches, we
look at the problem from that of choosing the correct set of
frames automatically that are discriminative in recognizing
the actions. A scheme similar to ours is the recent work of
Wang et al., [54], however they use manually-defined video
segmentation for equally-spaced snippet sampling.

Typically, pooling schemes consolidate input data into
compact representations. Instead, we use the parameters of
the data modeling function, i.e., the SVM decision bound-
ary, as our representation. Note that such a hyperplane is
of the same dimensionality as the data and well-known as a
weighted combination of each data point, where the weight
captures how discriminative each point is. There have been
other recent works that use parameters of machine learning
algorithms for the purpose of pooling, such as rank pool-
ing [14], generalized rank pooling [6], dynamic images [2]
and dynamic flow [52]. However, while these methods op-
timize a rank-SVM based regression formulation, our moti-
vation and formulation are different. We use the parameters
of a binary SVM to be the video level descriptor, which
is trained to classify the frame level features from a pres-
elected (but arbitrary) bag of negative features. In this re-
spect, our pooling scheme is also different from Exemplar-
SVMs [29, 56, 61] that learns feature filters per data sample
and then use these filters for feature extraction.

An important component of our scheme is the MIL
scheme, which is a popular data selection technique [7, 26,
57, 58, 62]. In the context of action recognition, schemes



similar in motivation have been suggested before. For ex-
ample, Satkin and Hebert [35] explore the effect of temporal
cropping of videos to regions of actions; however, assumes
these regions are continuous. Nowozin et al. [31] represent
videos as sequences of discretized spatio-temporal sets and
reduces the recognition task into a max-gain sequence find-
ing problem on these sets using an LPBoost classifier. Sim-
ilar to ours, Li et al. [27] propose an MIL setup for complex
activity recognition using a dynamic pooling operator–a bi-
nary vector that selects input frames to be part of an ac-
tion, which is learned by reducing the MIL problem to a
set of linear programs. Chen and Nevatia [46] propose a
latent variable based model to explicitly localize discrimi-
native video segments where events take place. Vahdat et al.
present a compositional model in [48] for video event de-
tection using a multiple kernel learning based latent SVM.
While all these schemes share similar motivations as ours,
we cast our MIL problem in the setting of normalized set
kernels [15] and reduce the formulation to standard SVM
setup which can be solved rapidly. In the ∝-SVMs of Yu et
al., [23, 59], the positive bags are assumed to have a fixed
fraction of positives, which is a criterion we also assume in
our framework. However, our optimization setup and our
goals are different. Specifically, our goal is to learn a video
representation for recognition, while [59] tackles the prob-
lem of action detection.

3. Proposed Method
In this section, we describe our method for learning

SVMP descriptors and the action classifiers. The overall
pipeline is illustrated in Figure 2.

Let us assume we are given a dataset of N video se-
quences X+ =

{
X+

1 , X
+
2 , ..., X

+
N

}
, where each X+

i is
sequence with a set of frame level features, i.e., X+

i ={
xi+1 ,xi+2 , ...,xi+n

}
, each xi+k ∈ Rp. We assume that

each X+
i is associated with an action class label y+i ∈

{1, 2, ..., d}. Further, the + sign denotes that the fea-
tures and the sequences represent a positive bag. We
also assume that we have access to a set of sequences
X− =

{
X−1 , X

−
2 , ...X

−
M

}
belonging to actions different

from those in X+, where each X−j =
{
xj−1 ,xj−2 , ...,xj−n

}
are the features associated with a negative bag, each xj−k ∈
Rp. For simplicity, we assume all sequences have the
same number n of features. Further our scheme is feature-
agnostic, i.e., they may be from a CNN or are hand-crafted.

Our goals are two-fold, namely (i) to learn a classifier
decision boundary for every sequence in X+ that separates
a fraction η of them from the features inX− and (ii) to learn
video level classifiers on the classes in the positive bags that
are represented by the learned decision boundaries in (i).
We provide below an MIL formulation for (i) and a joint
objective combining (i) and learning (ii).

3.1. Learning Decision Boundaries

As described above, our goal in this section is to generate
a descriptor for each sequence X+ ∈ X+; this descriptor
we define to be the learned parameters of a hyperplane that
separates the features x+ ∈ X+ from all features in X−.
We do not want to warrant that all x+ can be separated from
X− (as several of them may belong to a background class),
however we assume that at least a fixed fraction η of them
are classifiable. Mathematically, suppose the tuple (wi, bi)
represents the parameters of a max-margin hyperplane sep-
arating some of the features in a positive bag X+

i from all
features in X−, then we cast the following objective, which
is a variant of the sparse MIL (SMIL) [3], normalized set
kernel (NSK) [15], and ∝-SVM [59] formulations:

arg min
wi∈Rp,bi∈R,ζ≥0

P1(wi, bi) := ‖wi‖2 + C1

(M+1)n∑
k=1

ζk (1)

subject to θ(x; η)
(
wTi x + bi

)
≥ 1− ζk (2)

θ(x; η) = −1,∀x ∈
{
X+
i

⋃
X−
}
\X̂+

i (3)

θ(x̂; η) = 1,∀x̂ ∈ X̂+
i (4)∣∣∣X̂+

i

∣∣∣ ≥ η ∣∣X+
i

∣∣ . (5)

In the above formulation, we assume that there is a subset
X̂+
i ⊂ X+

i that is classifiable, while the rest of the posi-
tive bag need not be, as captured by the ratio in (5). The
variables ζ capture the non-negative slacks weighted by a
regularization parameterC1, and the function θ provides the
label of the respective features. Unlike SMIL or NSK objec-
tives, that assumes the individual features x are summable,
our problem is non-convex due to the unknown set X̂+.
However, this is not a serious deterrent to the usefulness
of our formulation and can be tackled easily as described in
the sequel and supported by our experimental results.

Given that the above formulation is built on an SVM ob-
jective, we call this specific discriminative pooling scheme
as SVM pooling and formally define the descriptor for a se-
quence as:

Definition 1 (SVM Pooling Desc.) Given a sequence X of
features x ∈ Rp and a negative dataset X−, we define
the SVM Pooling (SVMP) descriptor as SVMP(X) =
[w, b]T ∈ Rp+1, where the tuple (w, b) is obtained as the
solution of problem P1 defined in (1).

3.2. Learning Video Level Classifiers

Given a dataset of sequencesX+ and a negative bagX−,
we propose to learn the SVMP descriptors per sequence
and the classifiers on X+ jointly as a multi-class structured
SVM problem which includes the MIL problem P1 as a



Figure 2. Illustration of our SVM pooling pipeline: (i) Extraction of frames fi from videos, (ii) converting frames fi into features xi, (iii)
learning decision boundaries wj , one for every sequence, on its respective features xi, and (iv) using wj as descriptor in a video classifier.

sub-objective. The joint formulation is as follows:

min
w,b,Z

P2 :=

N∑
i=1

‖wi‖2 +

d∑
j=1

‖Zj‖2

+ C2

N∑
i,l=1

γil + C1

N∑
i=1

(M+1)n∑
k=1

ζik (6)

ZTj

([
w
b

]
i

−
[
w
b

]
l

)
≥ ∆(y+i , y

+
l )− γil, (7)

where y+i = j,∀y+l ∈ Id, and ∀j ∈ Id,

θ(x; η)
(
wTi x + bi

)
≥ 1− ζik, x ∈ X+

i

⋃
X−,∀i = IN ,

and θ(x; η) ∈ {+1,−1} , γil ≥ 0, ζik ≥ 0,

where θ(x.; η) is as defined in (3) and (4). The function
∆(y, z) computes the similarity between the ground truth
labels y and z. The formulation P2 jointly optimizes the
computations of SVMP descriptors per sequence (wi, bi)
and the parameters Z of d video level classifiers, in a one-
versus-rest fashion as described in (7). The constant C2 is
a regularization parameter on the action classifiers and γ
represents the respective slack variables per sequence. For
brevity, we use Im to represent the set {1, 2, ...,m}.

3.3. Efficient Optimization

The problem P2 is not convex due to the function θ(x; η)
that needs to select a set from the positive bags that sat-
isfy the criteria in (5). Also, note that the sub-problem
P1 could be posed as a mixed-integer quadratic program
(MIQP), which is known to be in NP [24]. While, there
are efficient approximate solutions for this problem (such
as [30]), the solution must be scalable to large number of
both high-dimensional features generated by a CNN and
low-dimensional local features. To this end, we propose the
following relaxation.

Note that the regularization parameter C1 in (1) controls
the positiveness of the slack variables ζ, thereby influencing
the training error rate. A smaller value of C1 allows more
data points to be misclassified. If we make the assumption
that useful features from the sequences are easily classifi-
able compared to background features, then a smaller value
of C1 could help find the decision hyperplane easily. How-
ever, the correct value of C1 depends on each sequence.
Thus, in Algorithm (1), we propose a heuristic scheme to
find the SVMP descriptor for a given sequenceX+ by itera-
tively tuningC1 such that at least a fraction η of the features
in the positive bag are classified as positive.

Input: X+, X−, η
C1 ← ε, λ > 1;
repeat

C1 ← λC1;
[w, b]← arg minw,b SVM(X+, X−, C1);
X̂+ ←

{
x ∈ X+ | wTx + b ≥ 0

}
;

until |X̂
+|

|X+| ≥ η;
return [w, b]

Algorithm 1: Efficient solution to the MIL problem P1

Each step of Algorithm (1) solves a standard SVM ob-
jective. Suppose we have an oracle that could give us a
fixed value C for C1 that works for all action sequences for
a fixed η. As is clear, there could be multiple combinations
of data points in X̂+ that could satisfy this η. If X̂+

p is one
such X̂+. Then, P1 using X̂+

p is just the SVM formula-
tion and is thus convex. That is, if we enumerate all such
X̂+
p that satisfies the constraint using η, then the objective

for each such X̂+
p is an SVM problem, that could be solved

using standard efficient solvers. Instead of enumerating all
such bags X̂+

p , in Alg. 1, we adjust the SVM classification
rate to η, which is easier to implement. Assuming we find a



C1 that satisfies the η-constraint using P1, due to the con-
vexity of SVM, it can be shown that the objective of P1 will
be the same in both cases (exhaustive enumeration and our
proposed regularization adjustment), albeit the solution X̂+

p

might differ (there could be multiple solutions).
Considering P2, it is non-convex in Z and (wi, bi)’s

jointly. However, it is convex in Z when fixing
(wi, bi),∀i ∈ {1, 2, ..., N}. Thus, under the above con-
ditions, if we need to run only one iteration of P1, then
P2 becomes convex in either variables separately, and thus
we could solve it using block coordinate descent (BCD) to-
wards a local minimum. Algorithm 2 depicts the iterations.
Note that there is a coupling between the data point decision
boundaries (wi, bi) and the action classifier decision bound-
aries Zj in (7), either of which are fixed when optimizing
over the other using BCD. When optimizing over (wi, bi),

ZTj

[
w
b

]
l

(in (7)) is a constant, and we use ∆(y+i , y
+
i ) = 1,

in which case the problem is equivalent to assuming Z as
a virtual positive data point in the positive bag. We make
use of this observation in Algorithm 2 by including Z in the
positive bag. Note that these virtual Z points are updated in
place rather than adding new points in every iteration.

Input: X+, X−, η
repeat

/* compute SVMP descriptors for
all sequences */

for X+
i ∈ X+ do

[wi, bi]← arg minw,b SVM(X+
i , X−, C);

end

Z ← Solve P2 fixing
[
w
b

]
i

,∀i = {1, ..., N};

/* Z is added to X+
i so that SVM

could be used to satify (7) */

X+
i ← X+

i ∪ Z
until until convergence;
return Z
Algorithm 2: A block-coordinate scheme for P2

When using decision boundaries as data descriptors, a
natural question can be regarding the identifiability of the
sequences using this descriptor, especially if the negative
bag is randomly sampled. To circumvent this issue, we pro-
pose two workarounds, namely (i) to use the same negative
bag for all the sequences, and (ii) assume all features (in-
cluding positives and negatives) are centralized with respect
to a global data mean.

3.4. Nonlinear Extensions

In problem P1, we assume a linear decision boundary
generating SVMP descriptors. However, looking back at

our solutions in Algorithms (1) and (2), it is clear that we
are dealing with standard SVM formulations to solve our
relaxed objectives. In the light of this, instead of using lin-
ear hyperplanes for classification, we may use nonlinear de-
cision boundaries by using the kernel trick to embed the
data in a Hilbert space for better representation. Assuming
X = X+∪X−, by the Representer theorem [43], it is well-
known that for a kernel K : X × X → R+, the decision
function f for the SVM problem P1 will be of the form:

f(.) =
∑

x∈X+∪X−

αxK(.,x), (8)

where αx are the parameters of the non-linear decision
boundaries. However, from an implementation perspective,
such a direct kernelization may be problematic, as we will
need to store the training set to construct the kernel. We
avoid this issue by restricting our formulation to use only
homogeneous kernels [49], as such kernels have explicit lin-
ear feature map embeddings on which a linear SVM can be
trained directly. This leads to exactly the same formulations
as in (1), except that now our features x are obtained via a
homogeneous kernel map. In the sequel, we call such a de-
scriptor a nonlinear SVM pooling (NSVMP) descriptor.

4. End-to-End CNN Learning
In this section, we address the problem of training a CNN

end-to-end with SVM pooling as an intermediate layer – the
main challenge is to derive the gradients of SVMP for effi-
cient backpropagation. Assume a CNN f taking a sequence
S as input. Let fL denote the L-th CNN layer and let YL de-
note the feature maps generated by this layer for all frames
in S. We assume these features go into an SVMP layer
and produces as output a descriptor w (using a precom-
puted set of negative feature maps), which is then passed to
subsequent CNN layers for classification. Mathematically,
let g(w) = arg minw SVMP(YL) define the SVM pooling
layer, which we re-define the hinge-loss as:

SVMP(YL) =
1

2
‖w‖2+

λ

2

∑
z∈YL

max
(
0, θ(z; η)wT z − 1

)2
.

As is by now clear, with regard to a CNN learning setup,
we are dealing with a bilevel optimization problem here –
that is, optimizing for the CNN parameters via stochastic
gradient descent in the outer optimization, which requires
the gradient of an argmin inner optimization with respect to
its optimum, i.e., we need to compute the gradient of g(w)
with respect to the data z. By applying Lemma 3.3 of [17],
this gradient of the argmin at an optimum SVMP solution
w∗ can be shown to be the following:

∇zg(w∗) = −∇ww SVMP(YL)−1∇zw SVMP(YL),



where the first term captures the inverse of the Hessian eval-
uated at w∗ and the second term is the second-order deriva-
tive wrt z and w. Substituting for the components, we have
the gradient at w = w∗ as:

−

I+λ ∑
∀j:θjwT zj>1

(θjzj)(θjzj)
T

−1λ ∑
∀j:θjwT zj>1

D (θ2jw
T zj−θj)+θ2jwzTj


where for brevity, we use θj = θ(zj ; η), and D is a diagonal
matrix, whose i-th entry as Dii = θ2iw

T zi − θi.

5. Experiments

In this section, we explore the utility of discriminative
pooling on several tasks, namely (i) action recognition using
video and skeletal features, (ii) action anticipation, and (iii)
localizing actions in videos. We introduce these datasets
briefly next along with details of the features used, followed
by an analysis of the parameters of our pooling scheme, be-
fore furnishing our results against state-of-the-art.

5.1. Datasets

HMDB-51 [22]: is a popular benchmark for video action
recognition, consisting of trimmed videos downloaded from
the Internet. The dataset contains 51 action classes and
6766 videos. The recognition results are evaluated using
3-fold cross-validation and mean classification accuracy is
reported. For this dataset, we analyze different combina-
tions of features on multiple CNN frameworks.
Charades [39]: is an untrimmed multi-action dataset, con-
taining 11,848 videos split into 7985 for training, 1863
for validation, and 2,000 for testing. It has 157 action
categories, including several fine-grained classes. In the
classification task, we follow the evaluation protocol of
[39], using the output probability of the classifier to be the
score of the sequence. In the detection task, we use ’post-
processing’ protocol described in [38], which uses the av-
eraged prediction score of a small temporal window around
temporal pivots. The dataset provides two-stream VGG-16
fc7 features which we use in our method.1 The performance
on detection and recognition tasks are evaluated using mean
average precision (mAP) on the validation set.
NTU-RGBD [37]: is by far the largest action datasets pro-
viding 3D skeleton data. It has 56,000 videos and 60 ac-
tions performed by 40 people from 80 different views. We
use the temporal CNN proposed in [20] to generate features,
but uses SVMP instead of their global average pooling.

5.2. Parameter Analysis

In this section, we analyze the influence of each of the
parameters in our scheme.

1http://vuchallenge.org/charades.html

0 50 100

A
c
c
u
ra

c
y
 (

%
)

0

20

40

60

80

ActivityNet
UCF101
THUMOS 2015
White Noise

(a)

Number of instance in the Pos/Neg Bag
5 10 20 30 40 50

A
c
c
u

ra
c
y
 (

%
)

59

60

61

62

63

64

Positive Bag
Negative Bag

(b)

Log10(C)
-4 -3 -2 -1 0 1 2 3 4

A
c
c
u

ra
c
y
 (

%
)

40

50

60

70

ActivityNet
UCF101
Thumos 2015
White Noise

(c)

Number of frames in sequence

0 500 1000 1500 2000

T
im

e
 (

s
e

c
o

n
d

)

0

10

20

30

40
Decision Boundary

Rank Pooling

Fisher Vector

Dynamic Image

(d)

Figure 3. Analysis of the parameters in our scheme. All experi-
ments use VGG features from fc6 layer. See text for details.

Selecting Negative Bags: An important step in our algo-
rithm is the selection of the positive and negative bags in
the MIL problem. We randomly sample the required num-
ber of frames (50) from each sequence/fold in the train-
ing/testing set to define the positive bags. In terms of the
negative bags, we need to select samples that are unrelated
to the ones in the positive bags. We explored four differ-
ent negatives in this regard to understand the impact of this
selection and apply them on the HMDB-51 dataset split-1.
They are samples from (i) ActivityNet dataset [4] unrelated
to HMDB-51, (ii) UCF-101 dataset unrelated to HMDB-
51, (iii) Thumos Challenge background sequence2, and (iv)
synthesized random white noise image sequences. For (i)
and (ii), we use 50 frames each from randomly selected
videos, one from every unrelated class, and for (iv) we used
50 synthesized white noise images, and randomly gener-
ated stack of optical flow images. As shown in Figure 3(a),
the white noise negative shows better performance for both
lower and higher value of η parameter. So, we use it in our
experiments for other datasets.
Choosing Hyperparameters: The three important param-
eters in our scheme are (i) the η deciding the quality of an
SVMP descriptor, (ii) C1 = C used in Algorithm 1 when
finding SVMP per sequence, and (iii) sizes of the positive
and negative bags. To study (i) and (ii), we plot in Fig-
ures 3(c) and 3(a) for HMDB-51 dataset, classification ac-
curacy when C is increased from 10−4 to 104 in steps and
when η is increased from 0-100% and respectively. We re-
peat this experiment for all the different choices of negative
bags. As is clear, increasing these parameters reduces the
training error, but may lead to overfitting. However, Fig-
ure 3(b) shows that increasing C increases the accuracy of

2http://www.thumos.info/home.html



Table 1. Comparisons using various features on HMDB-51 split-1
Feature/ Accuracy Accuracy when
model independently combined with:
pool5 (vgg-16) 57.9% 63.8% (fc6)
fc6 (vgg-16) 63.3% -
fc7 (vgg-16) 56.1% 57.1% (fc6)
fc8 (vgg-16) 52.4% 58.6% (fc6)
softmax (vgg-16) 41.0% 46.2% (fc6)
pool5 (ResNet-152) 69.5% -
fc1000 (ResNet-152) 61.1% 68.8% (pool5)

the SVMP descriptor, implying that the CNN features are
already equipped with discriminative properties for action
recognition. However, beyond C = 10, a gradual decrease
in performance is witnessed, suggesting overfitting to bad
features in the positive bag. Thus, we use C = 10 ( and
η = 0.9) in the experiments to follow. To decide the bag
sizes for MIL, we plot in Figure 3(b), performance against
increasing size of the positive bag, while keeping the nega-
tive bag size at 50 and vice versa; i.e., for the red line in Fig-
ure 3(b), we fix the number of instances in the positive bag
at 50; we see that the accuracy raises with the cardinality of
the negative bag. A similar trend, albeit less prominent is
seen when we repeat the experiment with the negative bag
size, suggesting that about 30 frames per bag is sufficient to
get a useful descriptor.
Running Time: In Figure 3(d), we compare the time it took
on average to generate SVMP descriptors for an increasing
number of frames in a sequence. For comparison, we plot
the running times for some of the recent pooling schemes
such as rank pooling [2, 14] and the Fisher vectors [51].
The plot shows that while our scheme is slightly more ex-
pensive than standard Fisher vectors (using the VLFeat3),
it is significantly cheaper to generate SVMP descriptors in
contrast to some of the recent popular pooling methods.

5.3. Experiments on HMDB-51

Following the recent trends, for this experiment, we use a
two-stream CNN model in popular architectures, the VGG-
16 and the ResNet-152 [13, 42]. We fine-tune a two-stream
VGG/ResNet model trained for the UCF-101 dataset.
SVMP on Different CNN Features: We generate SVMP
descriptors from different intermediate layers of the CNN
models and compare their performance. Specifically, fea-
tures from each layer are used as the positive bags and
SVMP descriptors computed using Algorithm 1 and 2
against the chosen set of negative bags. In Table 1, we
report results on split-1 of the HMDB-51 dataset and find
that the combination of fc6 and pool5 gives the best perfor-
mance for the VGG-16 model, while pool5 features alone
show good performance using ResNet. We thus use these
feature combinations for experiments to follow.

3http://www.vlfeat.org/

Table 2. Comparisons between SVMP and NSVMP on HMDB-51
split-1

VGG ResNet
Linear-SVMP 63.8% 69.5%
Non-linear-SVMP 64.4% 69.8%
Combination 66.1% 71.0%

Table 3. Comparison to standard pooling on HMDB-51 split-1
VGG ResNet

Spatial Stream-AP[10, 13] 47.1% 46.7%
Spatial Stream-MP 46.5% 45.1%
Spatial Stream-SVMP 58.3% 57.4%
Temporal Stream-AP [10, 13] 55.2% 60.0%
Temporal Stream-MP 54.8% 58.5%
Temporal Stream-SVMP 61.8% 65.7%
Two-Stream-AP [10, 13] 58.2% 63.8%
Two-Stream-MP 56.7% 60.6%
Two-Stream-SVMP 66.1% 71.0%

Table 4. Comparison of action anticipation on HMDB-51 split-1
HMDB-51

k/5 1/5 2/5 3/5 4/5 1
SVMP 58.3% 65.5% 68.4% 70.1% 71.0%
AP 48.6% 56.4% 59.9% 62.5% 63.8%
MP 46.2% 55.4% 56.3% 58.8% 60.6%

SVMP Extensions and Standard Pooling: We analyze
the complementary nature of SVMP and its non-linear ex-
tension NSVMP (using a Chi-sq homogeneous kernel) on
HMDB-51 split1. The results are provided in Table 2, and
clearly show that the combination leads to significant im-
provements consistently on both datasets. Comparison be-
tween SVMP and standard pooling schemes (such as av-
erage (AP) and max (MP)) are reported in Table 3 using
exactly the same set of features. As is clear, SVMP is sig-
nificantly better than the other two pooling schemes.
SVMP for Action Anticipation We also evaluated the use-
fulness of SVMP for action anticipation. This is motivated
by the intuition that SVMP might be able to learn gener-
alizable decision boundaries when shown only a small part
of the sequence – given the SVM is optimized in a max-
margin framework. Specifically, we use k× 1

5 initial part of
the sequences to be pooled by SVMP, (k ∈ {1, 2, 3, 4, 5})
which has to now predict the action in the full segment. We
use the ResNet feature for this experiment. The results are
provided in Table 4 and is clear that compared with others,
the benefits of SVMP become higher, when only seeing a
small fraction of the data, substantiating our intuition.

5.4. Recognition/Detection in Untrimmed Videos

As introduced in the Section 5.1, Charades is an
untrimmed dataset with multiple actions in one sequence.
We use the publicly available two-stream VGG features
from the fc7 layer for this dataset. We applied our scheme
on the provided training set (7985 videos), and report re-
sults (mAP) on the provided validation set (1863 videos)



Figure 4. T-SNE visualizations of SVMP and other pooling meth-
ods. From left to right: average pooling, max pooling, and SVMP.

for the tasks of action classification and detection. In the
classification task, we concatenate the two-stream features
and apply a sliding pooling scheme to create multiple de-
scriptors. Following the evaluation protocol in [39], we use
the output probability of the classifier to be the score of the
sequence. In the detection task, the standard evaluation set-
ting is to use the prediction score of 25 equidistant time
points in the sequence, which is not suitable for any pooling
scheme. So, we consider another evaluation method with
post-processing, proposed in [38]. This method uses the av-
eraged prediction score of a small temporal window around
each temporal pivots. Instead of average pooling, we apply
the SVMP. From Table 5, it is clear that SVMP improves
performance against other pooling schemes.

5.5. Skeletal Action Recognition in NTU-RGBD

For this experiment, we follow the two official evaluation
protocols described in [37], i.e., the cross-view and cross-
subject protocol. We use [20] as the baseline. This scheme
applies a temporal CNN with residual connections on the
3D skeleton data. We swap the global average pooling layer
in [20] by a Rank/SVM pooling layer. The result in Table 5
indicates that the SVMP works better than other pooling
schemes on the skeleton-based features.

5.6. Visualization of SVMP

To gain further intuitions into the performance boost by
SVMP, in Figure 4, we show TSNE visualizations compar-
ing to average and max pooling on 10-classes from HDMB-
51. The visualization shows that SVMP leads to better sep-
arated clusters, substantiating that it is learning much more
discriminative representations than traditional methods.

5.7. Comparisons to the State of the Art

In Table 5, we compare our best result against the state-
of-the-art results on each dataset using the respective stan-
dard evaluation protocols. For a fair comparison, we also
report our best result combining with hand-crafted features
(IDT-FV) [50] for HMDB-51. Our scheme obtains the
state-of-the-art performance in all datasets and outperform
other methods by 1–4%. We note that recently the two-
stream I3D+ model[5], which is pre-trained on the larger
Kinectics dataset (with more than 300K videos), achieves

Table 5. Comparison to the state of the art in each dataset, follow-
ing the official evaluation protocol for each dataset.

HMDB-51 (accuracy over 3 splits)
Method Accuracy
Temporal segment networks[54] 69.4%
AdaScan[19] 54.9%
AdaScan + IDT + C3D[19] 66.9%
ST ResNet[10] 66.4%
ST ResNet + IDT[10] 70.3%
ST Multiplier Network[11] 68.9%
ST Multiplier Network + IDT[11] 72.2%
Two-stream I3D[5] 66.4%
Two-stream I3D+ (Kinetics 300k)[5] 80.9%
SVMP (ResNet) 71.0%
SVMP (ResNet+IDT) 72.6%
SVMP (I3D+) 81.3%

Charades (mAP)
Method Classification Detection
Two-stream VGG (Average Pooling) [40] 14.3% 10.9%
Two-stream VGG (Max Pooling) [40] 15.3% 9.2%
ActionVLAD + IDT[16] 21.0% -
Asynchronous Temporal Fields [38] 22.4% 12.8%
SVMP(VGG) 25.1% 13.9%
SVMP(VGG+IDT) 26.7% 14.2%

NTU-RGBD
Method Cross-Subject Cross-View
Res-TCN (Average Pooling)[20] 74.3% 83.1%
Res-TCN (Rank Pooling [2]) 75.5% 83.9%
STA-LSTM [44] 73.4% 81.2%
ST-LSTM + Trust Gate[28] 69.2% 77.7%
Body-parts learning [33] 75.2% 83.1%
SVMP (Res-TCN) 78.5% 86.4%

80% on HMDB-51. However, without additional data, two-
stream I3D is outperformed by our SVMP. Moreover, most
of these methods could enjoy a further boost by applying
our SVMP scheme. To substantiate this, we also show the
I3D+ model to use SVMP (instead of their proposed aver-
age pooling) on HMDB-51 dataset using the settings in [5].

6. Conclusion

In this paper, we presented a simple, efficient, and
powerful pooling scheme, SVM pooling, for summariz-
ing videos. We cast the pooling problem in a multiple in-
stance learning framework, and seek to learn useful decision
boundaries on the frame level features from each sequence
against background/noise features. We provide an efficient
scheme that jointly learns these decision boundaries and the
action classifiers on them. We also extended the frame-
work to deal with nonlinear decision boundaries and end-
to-end CNN training. Extensive experiments were show-
cased on three challenging benchmark datasets, demonstrat-
ing state-of-the-art performance. Given the challenging na-
ture of these datasets, we believe the benefits afforded by
our scheme is a significant step towards the advancement of
recognition systems designed to represent videos.
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